Monthly Archives: April 2015

Too swamped to read about ‘the swamping problem’ in epistemology, but…



I was sent an interesting paper that is a quintessential exemplar of analytic epistemology. It’s called “What’s the Swamping Problem?” (by Duncan Prichard), and was tweeted to me by a philosophy graduate student, George Shiber. I’m too tired and swamped to read the fascinating ins and outs of the story. Still, here are some thoughts off-the-top of my head that couldn’t be squeezed into a tweet. I realize I’m not explaining the problem, that’s why this is in “rejected posts”–I didn’t accept it for the main blog. (Feel free to comment. Don’t worry, absolutely no one comes here unless I direct them through the swamps.)

1.Firstly, it deals with a case where the truth of some claim is given whereas we’d rarely know this. The issue should be relevant to the more typical case. Even then, it’s important to be able to demonstrate and check why a claim is true, and be able to communicate the reasons to others. In this connection, one wants information for finding out more things and without the method you don’t get this.

  1. Second, the goal isn’t merely knowing isolated factoids but methods. But that reminds me that nothing is said about learning the method in the paper. There’s a huge gap here. If knowing, is understood as true belief PLUS something, then we’ve got to hear what that something is. If it’s merely reliability without explanation of the method,(as is typical in reliabilist discussions) no wonder it doesn’t add much, at least wrt that one fact. It’s hard even to see the difference, unless the reliable method is spelled out. In particular, in my account, one always wants to know how to recognize and avoid errors in ranges we don’t yet know how to probe reliably. Knowing the method should help extend knowledge into unknown territory.
  2. We don’t want trivial truths. This is what’s wrong with standard confirmation theories, and where Popper was right. We want bold, fruitful, theories that interconnect areas in order to learn more things. I’d rather know how to spin-off fabulous coffee makers using my 3-D printer, say, then have a single good coffee now. The person who doesn’t care how a truth was arrived at is not a wise person. The issue of “understanding” comes up (one of my favorite notions), but little is said as what it amounts to.
  1. Also overlooked on philosophical accounts is the crucial importance of moving from unreliable claims to reliable claims (e.g., by averaging, in statistics.) . I don’t happen to think knowing merely that the method is reliable is of much use, w/o knowing why, w/o learning how specific mistakes were checked, errors are made to ramify to permit triangulation, etc.
  1. Finally, one wants an epistemic account that is relevant for the most interesting and actual cases, namely when one doesn’t know X or is not told X is a true belief. Since we are not given that here (unless I missed it) it doesn’t go very far.
  1. Extraneous: On my account, x is evidence for H only to the extent that H is well tested by x. That is, if x accords with H, it is only evidence for H to the extent that it’s improbable the method would have resulted in so good accordance if H is false. This goes over into entirely informal cases. One still wants to know how capable and incapable the method was to discern flaws.
  1. Related issues, though it might not be obvious at first, concerns the greater weight given to a data set that results from randomization, as opposed to the same data x arrived at through deliberate selection.

Or consider my favorite example: the relevance of stopping rules. People often say that if data x on 1009 trials achieves statistical significance at the .05 level, then it shouldn’t matter if x arose from a method that planned on doing 1009 trials all along, or one that first sought significance after the first 10, and still not getting it went on to 20, then 10 more and 10 more until finally at trial 1009 significance was found. The latter case involves what’s called optional stopping. In the case of, say, testing or estimating the mean of a Normal distribution the optional stopping method is unreliable, at any rate, the probability it erroneously infers significance is much higher than .05. It can be shown that this stopping rule is guaranteed to stop in finitely trials and reject the null hypothesis, even though it is true. (Search optional stopping on

I may add to this later…You can read it: What Is The Swamping Problem

Categories: Misc Kvetching, Uncategorized | 1 Comment

Blog at